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Steady flow through non-uniform gauzes of 
arbitrary shape 

By J. W. ELDERt 
Cavendish Laboratory, University of Cambridge 

(Received 18 July 1958) 

The steady, two-dimensional ff ow through an arbitrarily-shaped gauze, of non- 
uniform properties, placed in a parallel channel is considered for the case in which 
viscosity can be ignored except in the immediate vicinity of the gauze. The 
equations are linearized by requiring departures from uniformity both in the flow 
and in the gauze parameters to be small. Knowledge of any three of the upstream 
profile, the downstream profile, the shape of the gauze, and the gauze parameters, 
allows the other to be calculated from a linear relation between these four quan- 
tities. Particular solutions are given for the production of a uniform shear and the 
flow through linear and parabolic gauzes. The validity of the solution is verified 
by experiment. It is shown that the method can also be applied to two-dimen- 
sional flow in a diverging channel, axisymmetric flow in a circular pipe and in 
a circular cone, and to flow through multiple gauzes. 

1. Introduction 
When a stream of fluid passes through a wire gauze the stream may be deflected 

and the static pressure of the stream reduced. An adequate description of these 
properties of the gauze can be given in terms of a drag coefficient, K ,  and a lift 
coefficient, B, and many, largely empirical attempts, have been made to relate 
these coefficients to the numerical parameters of the gauze (e.g. Wieghardt 1953). 

The present paper is concerned principally with the steady two-dimensional 
flow in a parallel channel in which an arbitrarily-shaped gauze is placed. The flow 
through a gauze placed normal to the incident stream was f i s t  solved by Taylor & 
Batchelor (1949), who showed that departures from uniformity in the incident 
stream were attenuated by a factor (2 - K - B + KB)/(2 + K - B) .  This solution 
was also obtained by Bonneville & Harper (1951), in a manner similar to that 
employed by Bragg & Hawthorne (1950)~ who considered the perturbation to the 
stream function by gauzes that deflected the streamlines by small amounts. 
Davis (1957) applied the method to flow through two normal, interfering gauzes, 
while Owen & Zienkiewicz (1957) showed that a gauze, with a linear variation of 
drag across its surface, placed normal to a uniform incident stream produced 
a linear profile downstream. All these investigations rely on the departures of the 
flow from uniformity being small. A similar perturbation solution will be obtctined 
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below for the flow through a single or a pair of arbitrarily shaped, non-uniform 
gauzes; the equations being linearized by requiring both the departures of the 
gauze parameters from uniformity and the angle of incidence of the flow on the 
gauze to be small. The principal result of the paper is a linear relation between the 
upstream velocity profile, the downstream profile, the shape of the gauze, and the 
variation of K across the gauze. This relation can be manipulated to give any one 
of these four quantities in terms of the other three and contains all the hitherto 
known solutions as particular cases. 

Although in principle the solution also applies to a gauze which only partially 
fills the channel, it is found by experiment to be invalid unless K < I. For higher 
values of K the only solution so far known is that given by Taylor (1944), which 
consists in replacing the gauze by a sheet of sources. Throughout this paper only 
gauzes which fill the channel will be considered. 

1.1. A gauze as a surface of discontinuity 

For the present purpose any regular or nearly regular spatial distribution of 
obstructions which lie on or near a single surface will be regarded as a gauze. 
Typical examples are: a row of cylinders, a plane rectangular mesh of circular 
wires, a perforated plate, a sheet of cloth, a cascade of aerofoils, a honeycomb of 
parallel tubes, etc. Combinations of more than one, and possibly different, gauzes 
can under certain conditions be regarded as a single gauze. The definition implies 
and requires that the extent of the gauze is large in the directions parallel and 
small in the direction normal to the surface. As the following treatment is 
largely two-dimensional, a gauze may be thought of as a row of equal cylinders, 
not necessarily lying in a plane nor necessarily equally spaced. 

Although ‘gauze ’ is quite a broad concept, investigations are usually restricted 
to gauzes of simple geometrical form which can be specified by a few numbers, 
such as the wire spacing 1 and the wire diameter d of a square mesh wire gauze. 
The flow will then be determined by a velocity scale U,, the kinematic viscosity v, 
1, and d ,  from which the dimensionless parameters /3 = (1 - d/Z)2, the proportion 
of open area presented to the stream, and the Reynolds number R = U,d/v, may 
be constructed. 

Consider now a gauze placed in a steady-flow field, and use the sugces 1 and 2 
to indicate the regions upstream and downstream of the gauze. Some distance 
away from the gauze, the exact nature of the flow near it will be of little im- 
portance, particularly for R 1. On this basis the gauze may be replaced by a 
surface of discontinuity across which discontinuities in the velocity and pressure 
fields occur. It remains to describe how the fields immediately on either side 
of the surface are related. 

Let the velocity at  the gauze be resolved into a normal component U,, and 
a tangential component V,  (see figure 1). The mass flux pU, of fluid of density p 
through the gauze is conserved, and since the fluid is incompressible the velocity 
change AU, Unl- U,, = 0. 

Similarly, the momentum flux along the normal to the gauze is conserved, so 
that the drag per unit area is given solely by Ap, the loss of pressure across the 
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gauze. It is convenient to express this in terms of a dimensionless resistance 
coefficient K defined by 

Ap = +pKUi .  (1.2) 

K may take all values 2 0. By Bernoulli's theorem it follows that Ap is also given 
by the change in total pressure, p + &pU2, from far upstream to that far down- 
stream along a streamline. 

/ / /  y = L  Wall / / /  

t 
\ 

', Gauze 
Flow D \ 

\ 
\ 

FIGURE 1. Diagram of the co-ordinate systems and the flow boundaries. 

The screen also, in general, experiences a lift force, so that V,, $. E2, and we can 

AE E &-E2 = BV,,. (1.3) 
define B such that 

A streamline is usually bent towards the normal so that 0 < B 6 1. It may be 
that B = B($),  where $ is the angle between El and some characteristic direction 
in the gauze, such as a wire direction. However, it will be assumed in this paper, 
as hitherto, that B is independent of $, and further that U,, Ql and E2 lie in the 
same plane. 

Davis (1957) has found by experiment that K varies with the Reynolds 
number R in the manner 

K .i. KO + 88( 1 -/I)/&!. 
KO is independent of R and can be related to p by a mixing-jet model, similar to 
that proposed by Taylor & Davies (1944), with the result that 

(1.5) K O  = [( 1 - 0*95p)/0*95/I]2, 

where 0.95 is an empirical constant. 
The mechanism responsible for B is not yet understood. If, however, the flow 

is equivalent to  a uniform stream past a row of equally spaced vortices of circula- 
tion k, then V, = V, + 2nk/l. Hence, by definition, B = 2nk/lV,. If sucha circulation 
exists it must be generated in the vicinity of the cylinder so that on dimensional 
grounds k = AdK,  where A is a constant. That is, B = 2nAd/l. For a square mesh 

/3 = (1 - c Z / Z ) ~  and K + [(I -/I)//I]2 wire gauze, 

by (1.5), so that, B = 1 - ( I  +.,/K)-&, (1.6) 
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where we have placed 27rA = 1 to satisfy the assumption that B = 1 for K = co. 
This formula is similar to  one proposed on empirical grounds by Taylor & 
Batchelor (1949), and although it may be considerably in error for a particular 
gauze, it is sufficiently realistic to provide a convenient choice of pairs of values of 
K ,  B for use in theoretical discussion. B will be assumed independent of both 
R and the angle of incidence of the flow. 

K and B may, of course, be functions of position on the gauze, but there is no 
real significance in changes of K and B over distances much less than 1. 

1.2. The linearized boundary conditions at the gauze 
Consider the flow through a gauze placed in a parallel channel with walls at 
y = 0, L such that every velocity vector lies in the Cartesian co-ordinate plane 
XO Y and such that the flow at infinity is parallel to OX and given by U,(y). Let 
the angle X O n  be 8 (see figure 1). If the effect of viscosity be neglected except in 
the vicinity of the gauze, vorticity is conserved along streamlines. If, further, the 
flow perturbation due to the presence of the gauze is sufficiently small so that 
streamlines are deflected by a small amount only, then the vorticity < = ck, 
where k is unit vector normal to XO Y ,  is such that cis unchanged by the presence 
of the gauze except for a discontinuity at the gauze. Thus g = c(y) = - aU,/ay. 

It is necessary to establish that, in practice, it is possible to realize flows in 
which the assumption of a perfect fluid is valid. For the purpose of taking into 
account the diffusion of momentum by viscosity, consider as an extreme example 

the given by u,, = V +  ~ ,e r f (~y2/4vx)+ (u, < v). 
This can be shown to correspond to the flow produced by the laminar mixing of 
two parallel streams of slightly different speeds, V f U,, such as would be produced 
by a gauze made up of two parts of slightly different resistance coefficient. The 
half-width of the viscous region is required to be less than aL,  say, where for 
practical purposes a lies between 0.01 and 0.05, and L is the width of the channel. 
Hence we require 

This condition can normally be satisfied without difficulty. For example, in the 
Cavendish wind tunnel with L = 40cm and V = 500cm/sec, x / L  < 4 even for 
a = 0.01, and for a = 0.05, x / L  < 100. On the other hand, a uniform shear can be 
expected to persist almost indefinitely until viscous effects encroach into the flow 
from the wall boundary layers. Thus the assumption of a perfect fluid is a good 
one. 

and substitute into equations (l.l), (1.2) and (1.3), obtaining 

x / L  < 0.28a2VL/v. 

Write U, = U, T = tan@, y =  Kcos20, (1.7) 

u, = U - ( K - & ) T ,  
Ap = +py(U2+ VfT2), 

BUT = ( l -B)K--&+(K-KJT' .  
Except at the gauze, the fluid obeys the equation of motion 

1 

P 
--vp = +cu2-ux<, < = vxu,  



Flow through non-uniform gauzes of arbitrary shape 369 

from the y-component of which 

since Cl = - aU,,/ay, I& = - aU,,/ay. The largest of the above terms involving T is 
(V, - V,) T .  For T near zero (V, - V,) T is small compared to Ul so that neglecting 
such terms (a first step towards complete linearization) and making the equations 
dimensionless by means of a suitable mean velocity V by defining 

q = u/v, u = U,,/V, u* = U,,/V, 
u1 = UJP, u2 = u2/v, V l  = V,/v, v2 = V,/v, 

we have at the gauze, 
u1 = u2 = q,  

Now B < 1 and BT is small over a range of 6 near zero. If the departures of 
q from uniformity are also small, the product of BT and the variation of q can be 
neglected so that we can write q = 1 in BTq. The linearization is completed by 
writing 

where yo is a constant and Is1 Q 1. Substituting (1.9) into ( 1 . 8 ~ )  and neglecting 
second-order quantities, we obtain after an immediate integration 

Y = YOP +S(Y)l, (1.9) 

u-u* = 7oYo(q-1)+470~,  (1.10) 

where to satisfy continuity we require 

The derivation of (1.8) and (1.10) has required the following quantities to be 
small: the displacement of a streamline by the gauze, the variation of resistances, 
(V, - V,) T ,  BT, and the variation of velocity across the channel. It is found 
experimentally that it is normally sufficient to have the dimensionless shear 
Lduldy or Ldu*/dy less than 0.5. 

For low values of R, such that K behaves as in (1.4), equation (1.10) remains 
valid provided we write 

= COS’ 6d(KV2) /d  V2.  

s(y) dy = 0 if P is the mean velocity. J: 

2. Two-dimensional flow in a parallel channel 
The problem is to find the transformation relating the velocity profiles up- 

stream and downstream of an arbitrary gauze. The fluid is assumed to be perfect, 
have zero-normal velocity on the channel walls and satisfy (1.8 a, 6) and (1.10) at 
the gauze. The velocity field will be formulated in terms of a stream function +b 
which is perturbed in the vicinity of the gauze. The perturbation is determined by 
the assumption that vorticity is conserved along a streamline except for a dis- 
continuity at the gauze. 
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The formulation is simplest for two-dimensionalmotion where (see, for example, 
Lamb 1932), 

Suppose the gauze produces a perturbation @* to a main flow @O such that 
@ = $0 + @*, then, provided the gauze produces only small transverse displace- 
ments of the streamlines, 

5 = VZ@. (2.1) 

V2@* = 0. (2.2) 

A finite solution of (2.2) which satisfies the boundary conditions at the walls is 

u1 = u - C P, ennxlL cos nny/L, 

u2 = u - 
1. 
co 

Q, e-nnzlL COB nny/L, 
1 

Thus, 

I m 

1 

m 

1 

vul = x P, ennxlL sin nnylL, 

v 2  = C Q, e-nnxlL sin nnylL. 

The velocities given by these equations must satisfy the boundary conditions 
(1.8) and (1.10) on the gauze. Assuming that the gauze is everywhere nearly 
coincident with the plane x = 0, these conditions are 

W W 

q = u-xP,cosnw = u*-~Q,cosnw, 

BT = C [( 1 - B) P, + Q,] sin nw, 

(2.5) 

(2.6) 

u-u* = yo(q-l)++yos, (2.7) 

1 1 

1 

where w = ny/L and from (2.7) and (2.9), 

m 

yo(u- l ) + h o s  = ~ ~ ( l + y o ) P , - Q n l ~ o s n w .  (2.8) 
1 

so that, 

Then 

(2.10) 

(2.11) 
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so that substituting q from (2.5) in (2.7), 
00 

u* - 1 = A(u - 1) + +( 1 - A )  s + E C a, cos nw, (2.12) 
1 

where 

E = y0(2+yo-B)  and A = (2 -yo -B+yoB) / (2+yo-B)  = l-yo(l-E). 

Hardy & Rogosinski (1944) discuss the relation between two functions g(w), 
g*(w) defined in the range 0 < w < 7~ such that 

a, m 

1 1 
g(w) = C h, sin nw and g*(w) = h, cos nw. 

This relation is denoted by g* = X ( g )  and g = X*(g*) ,  and they show that 

S ( g )  = - [g(w + t )  - g(w - t ) ]  cot i t  dt. 
in lon (2.13) 

co 

1 
Hence, since BT = 2 am sin nw, we can write finally 

a*- 1 = A(%- l ) - i ( l - A ) s + E H ( B T ) .  (2.14) 

Notice that the factor A is the attenuation of an upstream flow variation by 
a uniform gauze normal to the stream, and that the remaining terms represent the 
disturbances introduced respectively by the variations of resistance coefficient 
and by variations of inclination to the stream. The separation of these effects is 
a consequence of the linearization of the equations. Equation (2.14) is a linear 
relation between the upstream velocity distribution, u, the downstream distribu- 
tion, u*, and the two properties of the gauze, and it may be used to relate any one 
of these quantities to the other three. For example, if the velocity distributions 
u and u+ are known, then there are two distinct cases of interest, corresponding to 
a shaped gauze of uniform resistance or a gauze of non-uniform resistance placed 
normal to the stream. 

If, first, the distribution of inclination, T, is required explicitly, it is readily 
obtained from (2.14) by applying the transformation S* to give 

u*-u 
EBT = S* [T+ ( 2 - B )  (u- 1)+*(1 (2.15) 

Provided u,u*,  K and B are given, (2.15) can be integrated to give the gauze 

shape, x - xo = T(y) dy, required to produce a prescribed velocity distribution. 

Secondly, for a gauze placed normal to the stream so that T = 0, (2.14) gives 
the variation of resistance required to produce a prescribed velocity distribution 

1: 
s = 2[A(u - 1) - (u* - 1)]/( 1 -A).  (2.16) as 

If this variation of s is produced by the variable spacing of a row of cylinders for 
whichp = I - d / l ,  then by (1.5) 

K + (;)z(l-;)-z = K,(l+s). (2.17) 
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It is assumed that K ,  is given; hence (2.16) and (2.17) can be solved for dll .  
A restriction is imposed by the requirement d / l  > 0, so that 

( ~ * - l )  < $ ( l - A ) + A ( u - l ) .  

In  particular, to  produce the linear gradient u* - 1 = h(y/L - 3) from a uniform, 
incident flow with u = 1 requires 

8 = -2h(y/L-*)/(1-A). (2.18) 

This particular result has already been derived and verified experimentally by 
Owen & Zienkiewicz (1957). 

3. Axisymmetric and diffuser flow 
The simplest extension of the above results is to nearly radial, two-dimensional 

flow. Use polar co-ordinates (r,  8). For potential flow in a channel with walls at 
8 = 0, a, the velocity, distant from the gauze, is radial and of the form u = f (8) /r .  
The gauze produces a perturbation $* to the stream function p, where again 
V2$* = 0. Appropriate eigenfunctions for $* are rk sin k8, where k = nnla. The 
solution proceeds exactly as in section 2, except that y, ul, u2 are replaced by 
0,fl(8),f2(8). Equation (2.14) becomes 

(3.1) 

where A, E ,  s, and the operator X have the same meaning as in 5 2, but T is the 
tangent of the angle between the radius vector and the gauze normal. The solution 
(2.15) also applies, but z-xo is replaced by log r/ro, so that 

f* - 1 = A(f- 1) + E X ( B T )  - +( 1 -A)  S, 

- f ) / E  + ( 2  - B )  (f- 1)] dw. 

A further extension can be made to the axisymmetric flow in a circular pipe 
of radius a. Use cylindrical polar co-ordinates ( r ,  8, z) ,  where 3/30 = 0 and 
U = ( V ,  0, U ) .  The equation of continuity is satisfied by introducing a stream 
function defined by rU = -a$/ar, rV = a$/az. As before, we assume that vor- 
ticity is conserved along a streamline, except for a discontinuity introduced at the 
gauze. Hence, the vorticity < is of the form (0, c, 0), where 

If the gauze produces a perturbation $* to the stream function $0, then 
L($*) = 0. This equation can be separated to yield the finite solutions 
$* = re-mlz' Jl(mr), where Jl(ma) = 0. The solutionnow proceeds as before except 
that Jo(mr) replaces cos mw, Jl(mr) replaces sin nw, and the summations are over 
all roots m such that J,(ma) = 0. The previous solution (2.16) applies except that 
the transformation X i s  now defined in terms of the Bessel functions Jo and J1 by 

and 9* = 3 f W 7  9 = **(g*) .  J 
The properties of the transformation represented by these Fourier-Bessel series 
can be expected to be similar to the corresponding Fourier series. 
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The solution for the axisymmetric flow in a circular pipe can be extended to the 
case of flow in a circular-cone diffuser, in a manner similar to that used for radial 
two-dimensional flow. Use spherical polar co-ordinates ( r ,  8, @), so that 3/26 = 0 
and U = ( U ,  V ,  0). For potential flow within the cone 8 = a, the velocity, 
distant from the gauze, is radial and of the form u = f (0 ) / r z .  As before, solution 
(2 .16)  with the modification (3 .2)  applies here, except that f(8) replaces u(y).  

4. Multiple gauzes 
A further simple extension of the previous results is to the common practical 

case of two or more gauzes placed in series. Consider a gauze A placed at x = 0 
and a gauze B placed at x = xo and define 

7, = coth c,, cn = coshec t,, 
where tn = nnxo/L and n is an integer. As before, it is possible to express the 
velocity field in terms of trigonometric series so that with, in an obvious notation, 

u-l = I: H,cosnw, 
m 

n=l 
m - 

BATA = Gnsinnw, 

u* - 1 = L,cosnw, 

BBTB = C M,sinnw, 
n=1 

n=1 

OD 

n=l 

a3 

then it can be shown that 

D, L, = P,H, + Qn G, i- RH,, 
where Dn = -7 .47Bcn+ [(I + Y A )  (l + Y B )  f ( l -  BA) ( l  -BB)l 7 n  

+ ( 1 + 7 A  ) ( 1 - BB) + ( 1 + 7B) ( 1 - B.4 1, 
' n  = - 3/.4YB(l- B.4) ( l -  BB) 6 + L 1  + ( - 7 A )  - 7 B )  ( - B.4) 

- BB)I 7, + -?A) (l -BA) -k ( -?B) ( 1  -BB),  

&?a = 7.4 + ( l -  BB) [ 7 B ( l  + 7 A )  cn +Y.4(' -?B) rnl, 
Rn = YB( - BA) + [7.4( - YB) 6 + YB( -k Y A )  rnl. 

For & large, it can be shown that the solution corresponds to the result that 
would be obtained by assuming the gauzes did not interfere and using (2.16) 
twice. In  general, although Pn can be zero, due to the presence of and yn in each 
coefficient, two interfering gauzes cannot remove all variations in u - 1 but can 
merely remove a particular harmonic component. The case of two normal inter- 
fering gauzes has already been solved by Davis (1957).  

5. The linear gauze 
A linear gauze, inclined at a uniform angle to the stream, provides both 

theoretically and experimentally one of the simplest flows through a gauze 
inclined to the stream and at the same time reveals all the consequences of the 
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ability of a gauze to deflect the stream. Consider the uniform flow incident on 
a gauze for which both T and K are uniform over the gauze surface and, therefore, 
s is zero. By (2.14), 

The transform X (  1) can be evaluated by elementary analysis, giving 

u*- 1 = EBTX(1). 

u*--l=- 2EBT log cot 8w. 
7r 

In  figure 2,  the curve of (u* - l ) /EBT as a function of y is drawn together with 
experimental values. The agreement is good even close to the walls where the 
present theory gives an infinite value. 

Flow 

0 20 

10 

I I 
-2 0 2 

FIUURE 2. The velocity profile downstream of a gauze inclined at a uniform angle to a mi- 
form incident stream. Theoretical curve from equation (5.1). Experimental points for 
e = 100, 200, 300, 400,450. 

Apart from some qualitative observations in a water channel, the experiments 
were performed, in collaboration with Dr G. Davis of the Australian Atomic 
Energy Commission, in the wind tunnel of the Heat Research Laboratory of the 
Engineering Laboratory, Cambridge. The tunnel provided a velocity of 30 m/sec 
in a polished wood-working section of 5 in. x 10 in. Velocity measurements were 
made with a 0-125in., 3-hole probe and an inclined tube manometer. The tunnel 
boundary layer was 0.05 in. thick. Velocity variations across the section, outside 
the boundary layers, was less than 1 yo and flow direction variations were less 
than 15'. The screens were mounted on wooden frames and clamped to the 
adjustable tunnel walls which provided a range of 0 up to 45". The data of figure 1 
were with values of 1, p, K ,  B of 0*0194in., 0.395,2*20 and 0.220, while the values 
for figure 4 were O.O117in., 0.348, 3-20 and 0.286. 
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Notice that the coefficient 
ET = sin 28/(M + cos 28), ( 5 4  

where M = 1 + (4- 2B)/K, 

has a maximum at COB 28 = - 1/M, where its value is (M2 - l)-&. ET is plotted 
in figure 3, for a series of values of K and corresponding values of B taken from 
(1.6). It is seen that near 8 = 0 there is an extensive region where ET cc 8, that 
the extent of this region increases with K ,  and that the maximum occurs for 
6' 2 in. Although the maximum values of ET suggested here occur at values of 

tET 

FIGURE 3. The deflexion parameter ET for various values of K 
rn a function of the gauze inclination. 

the inclination outside the range of the linearized solution, qualitative experi- 
ments in a water channel, in which we observe the deflexion of a dye stream on 
passing through the gauze, clearly show a maximum deflexion for &r < 8 < +n. 
Since the deflexion is proportional to ET, these observations suggest that the 
qualitative conclusions of the linearized theory apply even for 8 > tn. 

It is important to evaluate the stream function in order to verify directly the 
fundamental assumption that the deflexion of a streamline in passing through the 
gauze is small. The deflexion Y(z ,  y )  of a streamline which passes through y and 
originates at y ,  is 

and is related to  the perturbation stream-function, to the first order, by 

y = Y-Y,, 

YIL = $*/V. 
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From (2.3) and (2.11) we obtain 

where 

The form of the mid-stream line, for which y, = QL, has been computed and is 
shown in figure 4. The bulk of the change occurs in 1x1 c L. Near y = 4L the final 
displacement Y(oo, y ) / L  + EBT[ - 0.371 + (y/L - +)'I. 

YIEB TL o4i 
1 

-0.4-m 

FIGURE 4. The middle streamline through a linear gauze placed at I: = 0. 

It is also of interest to observe that the stress coefficient is 

and that the terms neglected in deriving the boundary conditions at  the gauze are 
of order [(V, - V,) TI,+ = - EBT'. 

The experiments here were with values of p up to 0.2, whereas in the measure- 
ments of Owen & Zienkiewicz (1957) the stress reached 0.45. It thus appears that 
the linearized equations may be used with confidence up to p = 0.5 and T = 1. 

6. The parabolic gauze 
A second simple flow through a non-normal gauze is that through a parabolic 

gauze. This introduces the additional feature that Kcos2 6' is no longer inde- 
pendent of y. Consider the gauze (Y-QL)~ = L(kL-z)/4k, of sag k, so that 
T = dx /dy  = - 8k(w-47r)/nr. Hence by (2.14), with u = 1, R = constant, but 
s =l= 0, and evaluating the transform &(w - &r) by elementary analysis, 

log 2 sin w, 
8kEB 

(u*- 1)-Au = -- 
7l 

where Au = Q( 1 -A) (1 - 4kcosaB/tan-l k). 
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In figure 5, (u* - I - Au)/fCEB is plotted together with experimental values. The 
agreement is not quite so good as for the linear screen, due to the difficulty of 
bending an accurate parabola. 

1 
I 

k 
0 037 

0 026 

(u*-~-Au)IEBT 

- 1  0 1 2 
FIQURE 5. The velocity profile downstream of a parabolic gauze in a uniform stream. 

Theoretical curve from equation (6.1). Experimental points for sag k = 0.26 and 0.37. 

1 
I 

FIQURE 6. The gauze shape to produce a uniform shear from a uniform incident stream. 

7. The production of a uniform shear 
The production of a linear velocity gradient by means of a linear variation of 

resistance across the gauze as in (2.18) has already been investigated by Owen & 
Zienkiewicz (1957). The alternative physical method of bending a uniform gauze 
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to  an appropriate shape has some practical convenience. Consider the particular 
case of (2.15) required to produce the linear profile u* - 1 = h(y/L - Q) from u = 1 ; 
it is 

It can be shown by elementary analysis that 

**(w - &T) = - log tan St dt ,  :low 

where 

1 
= - ( -  C + u 2 + ~ u 4 + + 6 +  ...), 
n 

c =  -- s,”” log tan Qt dt = 0.9 15, 

so that BEn3x/AL = - 0 . 9 1 5 ~  + +a3 + &a5 + +&a7 + . . . . (7.3) 

This series can be used with confidence right up to the wall since x becomes small 
there. The required gauze shape, given by BEn3x/AL as a function of y, is shown in 
figure 6. This shape is to  be expected in view of the result for a linear screen where 
in the centre of the channel the shear is uniform and only the flow near the walls 
would need to be adjusted to produce a completely uniform flow. 

I gratefully acknowledge that my period of research at Cambridge has been 
made possible by my employers, the New Zealand Defence Scientific Corps. 

REFERENCES 

BONNEVILLE, J. M. & HARPER, D. B. 1951 An analysis and investigation of two-dimen- 

BRAGG, S .  L. & HAWTHORNE, W. R. 1950 J .  Aero. Sci. 17, 243. 
DAVIS, G. 1957 Non-uniform $ow through wire screens. Ph.D. Dissertation, University 

HARDY, G. H. & ROGOYINSKI, W. W. 1944 Fourier Series. Math. Tracts, 38. Cambridge 

LAMB, H. 1932 Hydrodynumics. Cambridge University Press. 
OWEN, P. R. & ZIENKIEWICZ, H. K. 1957 J .  Fluid Mech. 2, 521. 
TAYLOR, G. I. 1944 Aero. Res. Coun. R. & M .  no. 2236. 
TAYLOR, G. I. & BATCHELOR, G. K. 1949 Quart. J .  Mech. Appl. Math. 2, 1. 
TAYLOR, G. I. & DAVIS, R. M. 1944 Aero. Res. Coun. R. & M .  no. 2237. 
WEIGHARDT, K. E. G. 1953 Aero. Quart. 4, 186. 

sional flow through wire screens. M.S. Thesis, Massachusetts Institute of Technology. 

of Cambridge. 

University Press. 


